On finitely generated profinite groups, II: products in quasisimple groups

نویسنده

  • Nikolay Nikolov
چکیده

We prove two results. (1) There is an absolute constant D such that for any finite quasisimple group S, given 2D arbitrary automorphisms of S, every element of S is equal to a product of D ‘twisted commutators’ defined by the given automorphisms. (2) Given a natural number q, there exist C = C(q) and M = M(q) such that: if S is a finite quasisimple group with |S/Z(S)| > C, βj (j = 1, . . . ,M) are any automorphisms of S, and qj (j = 1, . . . ,M) are any divisors of q, then there exist inner automorphisms αj of S such that S = ∏M 1 [S, (αjβj) qj ]. These results, which rely on the Classification of finite simple groups, are needed to complete the proofs of the main theorems of Part I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartesian products as profinite completions

We prove that if a Cartesian product of alternating groups is topologically finitely generated, then it is the profinite completion of a finitely generated residually finite group. The same holds for Cartesian producs of other simple groups under some natural restrictions.

متن کامل

On finitely generated profinite groups, I: strong completeness and uniform bounds

We prove that in every finitely generated profinite group, every subgroup of finite index is open; this implies that the topology on such groups is determined by the algebraic structure. This is deduced from the main result about finite groups: let w be a ‘locally finite’ group word and d ∈ N. Then there exists f = f(w, d) such that in every d-generator finite group G, every element of the verb...

متن کامل

The generalised Fitting subgroup of a profinite group

The generalised Fitting subgroup of a finite group is the group generated by all subnormal subgroups that are either nilpotent or quasisimple. The importance of this subgroup in finite group theory stems from the fact that it always contains its own centraliser, so that any finite group is an abelian extension of a group of automorphisms of its generalised Fitting subgroup. We define a class of...

متن کامل

Rational Codes and Free Profinite Monoids

It is well known that clopen subgroups of finitely generated free profinite groups are again finitely generated free profinite groups. Clopen submonoids of free profinite monoids need not be finitely generated nor free. Margolis, Sapir and Weil proved that the closed submonoid generated by a finite code (which is in fact clopen) is a free profinite monoid generated by that code. In this note we...

متن کامل

ELEMENTARY EQUIVALENCE OF PROFINITE GROUPS by

There are many examples of non-isomorphic pairs of finitely generated abstract groups that are elementarily equivalent. We show that the situation in the category of profinite groups is different: If two finitely generated profinite groups are elementarily equivalent (as abstract groups), then they are isomorphic. The proof applies a result of Nikolov and Segal which in turn relies on the class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007